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Abstract 
 
We present a new technique for calibrating the apex angles of dispersion prisms, which are used in the 
measurement of the index of refraction of optical glasses. The new method requires only a phase measuring 
interferometer, together with an electronic autocollimator, and eliminates the need for a rotary or indexing ta-
ble. The apex angles of a nominally equilateral prism of fused silica were measured and the results compare 
favorably with a traditional calibration using an indexing table comparator. 
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1. INTRODUCTION 
 
Designers of complex lens systems for optical photolitho-
graphy need to know the index of refraction of the lens 
materials (typically fused silica) with uncertainties ap-
proaching one part in 106. The index of refraction of opti-
cal glasses is commonly measured by a technique known 
as minimum deviation, as illustrated in Figure 1. As a 
nearly equilateral prism (called a dispersion prism) of the 
material of interest is rotated about an axis normal to the 
plane of the figure, the angular deviation of a light ray in-
cident as shown will pass through a minimum. This mini-
mum deviation occurs when the path of the light ray 
through the prism is parallel to the base, as shown in Fig-
ure 1. 
 
Denoting the angle of minimum deviation by ϕmin , and the 

index of refraction of the glass by gn , a straightforward 
analysis [1,2] then shows that  
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where A is the prism apex angle. The deviation ϕmin  is 
typically measured with a prism spectrometer fitted with a 

high-accuracy angle encoder, while the apex angle A 
must be separately calibrated. Clearly, the uncertainty of 
such an index measurement is limited by uncertainties in 
the measurements of the angles ϕmin  and A. For fixed 

ϕmin  the sensitivity to apex angle error is 
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For typical values of ≈g 1.5n , ≈ °60A , and ϕ ≈ °min 37  

we then have ≈g 0.65dn dA  or ≈g g 0.43dn n dA . Thus, 

neglecting any uncertainty in the measurement of ϕmin , in 
order to measure the index of refraction to within one part 
in 106 requires: 
 

−≤ × ≈62.3 10 radians 0.5 arc-seconds.dA  (3) 
 
Angle measurements to this level of accuracy are near 
state-of-the-art for artifacts such as prisms and optical 
polygons [3]. 
 
2.  OBSERVATIONS WHEN MEASURING FACE 

FLATNESS ERRORS OF A DISPERSION PRISM 
 
At the National Institute of Standards and Technology 
(NIST) the most accurate calibrations of angle artifacts 
are carried out on the Advanced Automated Master Angle 
Calibration System (AAMACS), a fully automated system 
of highly repeatable, high-resolution indexing tables [3]. 
When measuring angles between nominally planar sur-
faces using high-resolution autocollimators, we have 
demonstrated fundamental limits to achievable uncer-
tainty due to flatness errors of the reflecting surfaces [4].  
 
As a rule of thumb, systematic, low spatial frequency fig-
ure errors of the order of λ/20 (λ= 633 nm) can be ex-
pected to cause variations in the direction of the average 
surface normals, as measured by different autocollima-
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Figure 1.  The path of minimum deviation for a ray of
light through a dispersion prism. The prism apex angle
is A, and the angular deviation is ϕmin . 

ϕmin  



tors, of a few tenths of an arc-second or approximately 
one microradian. For this reason, during the calibration of 
very high quality angular artifacts we routinely measure 
the face flatness errors using a well-characterized com-
mercial phase measuring interferometer (PMI) system.  
 
During the process of measuring the face flatness errors 
of a fused silica dispersion prism that was sent to NIST 
for calibration, we noticed that by performing small 
angular adjustments of the prism near the primary null 
that we could observe any one of three separate and 
distinct interferograms of similar contrast. One of these 
interferograms, of the size of the rectangular prism face, 
represented the flatness error of interest while the other 
two were of one-half aperture size coincident with the left 
and right halves, respectively, of the prism face. Figure 2 
shows a photograph of the three fringe patterns. 
 
3. DISPERSION PRISM GEOMETRY AND THE HALF-

APERTURE INTERFEROGRAMS 
 

The origin of the two half-aperture interferograms can be 
understood by reference to Figure 3, which shows the 
relevant ray paths. The secondary fringe patterns (paths 
1 and 2 in the figure) are caused by rays which enter the 
prism and return after three internal reflections, the first 
and last of which are total (and thus lossless). The angu-
lar separation of the interferograms results from a lack of 

geometric perfection in the nominally equilateral prism. 
For a perfect prism, the three incident rays would each be 
retroreflected and the signals would overlap, in all likeli-
hood confusing the PMI analysis software. For the prism 
we tested the angular separations of the images were on 
order of one or two arc-minutes 
 
Now let the prism in Figure 3 be rotated through a small 
angle δ1  so that ray path 1 is retroreflected. In this posi-

tion a half-aperture null interferogram will be observed on 
the PMI system and the resultant geometry may be un-
derstood by reference to Figure 4. 
 
Assuming the prism to be nearly equilateral, we denote 

the apex angles by ε° +60 k , k = 1,2,3. From the diagram 
we see that there are two triangles containing the 
unknown angle α . Summing the angles in these two 
triangles yields the relations: 
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     (4) 

Subtracting and rearranging yields: 
 

θ ε ε= −1 2.    (5) 
 

The refraction angle θ  is related to the angle of incidence 
δ1  by Snell's Law: δ θ =1 g airsin sin n n . Setting =air 1n  

and δ θ δ θ≈1 1sin sin  for small angles, (5) becomes: 
 

( )δ ε ε= −1 g 1 2 .n    (6)  
 

If the prism is now re-oriented so that ray path 2 is 
retroreflected, a similar analysis yields the relation 
 

( )δ ε ε= −2 g 2 3 ,n    (7) 
 

where the angle δ2  is defined by analogy with δ1 , with a 
change of algebraic sign.  
 
Equations (6) and (7) provide two relationships among 
the three unknown angles ( )ε ε ε1 2 3, , . A third relationship 
follows from the angle closure constraint [5,6]: 
 

ε ε ε+ + =1 2 3 0.    (8) 
 

The three equations (6-8) can then be solved to yield: 
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Figure 3. The three possible interferogram ray paths 
for a dispersion prism.  
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Figure 2. The three fringe patterns observed with a 60° 
dispersion prism and a Fizeau interferometer. 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Prism orientation yielding one of the half-
aperture interferograms. The angle δ1  is exaggerated. 
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Measurement of the two angles δ δ1 2 and  thus suffices to 
completely determine the apex angles of the prism, pro-
vided that the refractive index gn is known a priori. Note 

that both angles δ δ1 2 and  are measured using one face 
of the prism. Additional (partially redundant) data can be 
obtained by repeating the measurements using the other 
two prism faces. 
 
The form of the data equations (6) and (7) shows that the 
angles δ δ1 2 and  each encode an optical angle difference 
(OAD) ε∆gn . Such a quantity is analogous to the familiar 

optical path difference (OPD) ∆gn x  measured for a physi-

cal path difference ∆x  in conventional interferometry. 
The technique is an internal comparator method in which 
the prism apex optical angles εg kn  are intercompared 
within the glass. The dependence upon the refractive in-
dex suggests two types of practical application: 
 
• If the refractive index gn  is known with an acceptable 

uncertainty, then the prism apex angles can be cali-
brated according to Eqs. (9). 

 
• If gn is unknown, the results from Eqs.(9) can be 

combined with a separate external apex angle cali-
bration and the results used to calculate gn . A sim-
ple technique for such an external calibration, using 
only an accurate autocollimator, has been described 
by Rao [7]. 

 
4. EXPERIMENTAL TEST OF CONCEPT 
 
The angles δ1 and δ2  can be conveniently measured us-
ing the setup shown schematically in Figure 5. The prism 
is mounted on a small rotation stage together with an 
auxiliary plane mirror. A high-resolution (0.05 arc-second) 
electronic autocollimator aligned to the plane mirror 
measures the amount of stage rotation as each of the 
three accessible interferograms is brought into null align-
ment with the PMI reference transmission flat. The pre-
cise angular positions of the three interferometric nulls 
are found by making several maps of the optical path dif-
ference (OPD) on either side of null. Computed tilt from 

each of these maps (waves/aperture units) is then least-
squares fit to the set of angular positions measured by 
the autocollimator. The null positions are then computed 

from the zero crossings of the fit lines. The differences 
between the null position of the full-aperture interferogram 
and each of the two sub-aperture interferograms yield the 
angles δ1 and δ2  of interest. 
 
Table 1 shows the results of six measurements of the 
apex angles of a UV-grade fused silica dispersion prism 
with 50 mm × 25 mm faces. The angles were computed 
from measured values of δ1 and δ2  using Eqs.(9) and the 

value ≈g 1.457n at λ = 633 nm, the PMI wavelength [8]. 
The apex angles were measured using each of the three 
prism faces as the entrance face, and the entire meas-
urement sequence repeated twice.  
 
The apex labeled "A" is the angle of interest to the cus-
tomer for the use of the prism in a high-accuracy mini-
mum deviation determination of the refractive index. This 
apex angle was independently calibrated using the 
AAMACS system. Apex A was measured in both "top up" 
and "top down" positions. In each position the apex angle 
was sequentially compared with a contiguous set of 50 
nominally-equal comparator angles in a procedure called 
partial closure. The AAMACS calibration yielded: 
 

( )− ° = ±AAMACS( 60 ) 80.0 0.4  arc-secondsA ,   (10) 
 
where the = 2k  expanded uncertainty of 0.4" is domi-
nated by uncertainty due to flatness errors of the prism 
faces. 
 

  Angle Deviations from 60° 
(arc-sec) 

Run Entrance 
 face 

Apex 
A 

Apex 
B 

Apex 
C 

AB 80.4 -49.6 -30.8 
AC 81.1 -49.9 -31.2 1 
BC 81.1 -49.9 -31.2 
AB 79.5 -48.9 -30.6 
AC 81.7 -50.5 -31.2 2 
BC 80.5 -51.7 -28.8 

Average 80.7 -50.1 -30.6  
Std. Deviation 0.8 0.9 0.9 

 
Table 1. Results of dispersion prism apex angle meas-
urements using the setup of Figure 5. Prism material: UV-
grade fused silica, ≈g 1.457n @ λ = 633  nm. 
 
As seen from Table 1, the initial results are reasonably 
encouraging. The result for apex angle A is: 
 

− ° = ±TEST( 60 ) (80.7 1.6) arc-secondsA  , (11) 
 

where 1.6" is not the actual angle measurement uncer-
tainty but rather a 2σ measure of reproducibility computed 
from the six measurement results. We stress this point 
because a complete uncertainty budget must address 
systematic effects and the effect of imperfect realization 
of the measurand. We turn to a brief discussion of these 
matters. 
 
 
5. MEASUREMENT UNCERTAINTY 
 
In these preliminary experiments we made no particular 
attempt to optimize the measurement procedure or to 

 
 
 
 
 
 
 
 
 
Figure 5. Experimental setup for prism apex angle
measurement. The autocollimator measures the an-
gular separation between the three interferometric
nulls. 
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minimize errors due to effects such as thermal drift or air 
turbulence. It is interesting to ask how well a prism might 
be calibrated under well-controlled conditions. Assuming 
an adequate thermal environment and measurement re-
producibility, the principal contributors to measurement 
uncertainty are (1) autocollimator errors, including realiza-
tion of the unit and measurement noise; (2) imperfect re-
alization of the measurand; (3) PMI error in the angular 
positions of the interferometric nulls; and (4) refractive in-
dex uncertainty. 
 
Equations (9) show the explicit dependence of the prism 
apex errors on the measurement data from which the un-
certainties can be evaluated using the formula for the 
propagation of error [9]. From (9a) for example, it is 
straightforward to show that the uncertainty in ε1  due to 
autocollimator and refractive index uncertainties is: 
 

( ) ( ) ( ) ( ) ( )δ δ
ε δ δ
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 = + +
  

1 22
1 22 2 2

1 1 2 g2
g g

21 4
3

u u u u n
n n

(12) 

 
For UV-grade fused quartz at 633 nm, ( ) −≈2 8

g 10u n  and 

the last term can be neglected for angles within the range 
of the autocollimator. Assuming equal uncertainties for 
the two autocollimator measurements: 
 

( ) ( )δ δ= =2 2 2
1 2 0u u u , 

 
Eq. (12) reduces to: 
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The same result holds for ( )ε3u , while ( )ε ≈2 00.3u u , a 
slightly smaller value because both measured angles de-
pend directly on ε2 . From the specifications of the auto-
collimator used in the tests, ≈0 0.3"u  over the measure-

ment range of ± 1000" so that ( ) ( )ε ε=1 3 0.2"u u  and 

( )ε2 0.1"u . By taking a weighted mean of measure-
ments through all three prism faces these results can be 
slightly improved. 
 
A possible source of error arises from the use of Zernike 
polynomials whose X-axis tilt coefficients are plotted 
against the autocollimator data in order to detect, via zero 
crossings, the angular positions of the three interferomet-
ric nulls. The Zernike polynomials form an orthogonal set 
over a circular aperture, while in these experiments we fit 
to rectangular apertures. In the case of the half-width, 
through-the-glass interferograms, these rectangular aper-
tures were off-axis as well. A series of numerical experi-
ments using synthetic data showed that while the Zernike 
coefficients are sensitive to various rectangular maskings 
of the data, the effect on the zero crossing null positions, 
for surfaces dominated by power as were the faces of our 
test prism, is less than 0.1" and thus negligible. 
 
A fundamental limitation on achievable uncertainty follows 
from the failure of real prisms to realize the measurand, 
defined to be the angle between surface normals of per-
fectly flat faces. PMI face maps for the prism used in 
these experiments showed each face to be concave and 
dominated by power ( ∝ 2z x ) as illustrated in Figure 6. 

Departures ∆  from perfect planarity were in the range 
20 nm to 60 nm. For such a prism, the closure constraint 
is violated and the face curvature will introduce a system-
atic error into the measurement results. In principle, be-

cause the shapes of the prism faces are measured by the 
PMI in the course of the experiment, one could use ray 
tracing to calculate the mean deviation of a ray bundle 
through the prism in the through-the-glass null positions, 
and thus to correct the autocollimator data for the mean 
face curvature. The limiting uncertainty, however, will be 
set by the unknown quality of the autocollimator's own 
beam forming optics. 
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Figure 6. A prism with convex faces (exaggerated).
The apex angles do not sum to °180 .  
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